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Abstract. Animal studies have been instrumental in providing evidence for exercise-induced neuroplasticity of corticostriatal
circuits that are profoundly affected in Parkinson’s disease. Exercise has been implicated in modulating dopamine and glutamate
neurotransmission, altering synaptogenesis, and increasing cerebral blood flow. In addition, recent evidence supports that the
type of exercise may have regional effects on brain circuitry, with skilled exercise differentially affecting frontal-striatal related
circuits to a greater degree than pure aerobic exercise. Neuroplasticity in models of dopamine depletion will be reviewed with a
focus on the influence of exercise on the dorsal lateral striatum and prefrontal related circuitry underlying motor and cognitive
impairment in PD. Although clearly more research is needed to address major gaps in our knowledge, we hypothesize that the
potential effects of exercise on inducing neuroplasticity in a circuit specific manner may occur through synergistic mechanisms
that include the coupling of an increasing neuronal metabolic demand and increased blood flow. Elucidation of these mechanisms
may provide important new targets for facilitating brain repair and modifying the course of disease in PD.
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INTRODUCTION

This manuscript presents an overview of the impact
of exercise on neuroplasticity in animal models of
Parkinson’s disease (PD). Neuroplasticity is the ability
ofthebraintoencodeandlearnnewbehaviorsandcanbe
defined as changes in molecular and cellular processes
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in response to environmental experiences such as exer-
cise. We briefly explore the effects of exercise in the
basal ganglia (called the striatum in rodents), pertinent
neurotransmitter systems and associated cortical cir-
cuitry. While this brain area and related circuitry are
known to be impaired in individuals with PD, exercise
mayhelptorestorethenormalmotorandcognitivefunc-
tion observed in healthy individuals, Exercise has been
shown to affect a number of different neurotransmitters
including dopamine [1, 2], glutamate [1, 3, 4], sero-
tonin [5, 6], norepinephrine [6–8], and acetylcholine
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[9, 10] potentially contributing to the exercise related
benefits observed in PD. This review will focus on
two neurotransmitter systems that are essential for nor-
mal corticostriatal connectivity and function. Namely,
exerciseeffects indopamine(DA)andglutamateneuro-
transmissionaswell asneuronal connectivity (dendritic
morphology) inbasalgangliacircuitswill beaddressed.
Additionally,whileawidevarietyofexerciseshavebeen
reported to be beneficial in PD, this review will also
highlight recent animal studies that compare the type
of exercise. By way of differential effects on blood flow
and neurogenesis, skilled vs. aerobic exercise may each
have a distinct impact on neuroplasticity. These differ-
ential effects which are brain region and circuit specific
suggest a potential interaction between the type of exer-
cise and its impact on induced neuronal activation and
regional blood flow that may be important for facilitat-
ing repair or disease modification. Understanding the

impact of exercise in the basal ganglia and its related
circuitry may represent a new frontier in understanding
mechanisms of neuroplasticity and repair and thus lead
to novel therapeutic targets for PD.

PARKINSON’S DISEASE AND EXERCISE
AS A MODEL FOR NEUROPLASTICITY

PD is a progressive neurodegenerative disorder that
is characterized by the depletion of DA due to the
degeneration of neurons in the substantia nigra pars
compacta (SNpc), and to a lesser degree the ventral
tegmental area (VTA). Characteristic features of PD
include motor (bradykinesia, rigidity, tremor, gait
dysfunction, and postural instability) and cognitive
impairment (frontal lobe, executive dysfunction), as
well as mood disorders. In PD, studies in exercise and

Fig. 1. Dopamine (DA) projections play a critical role in modulating both motor and cognitive circuits. Dopamine (DA) from neurons within
the substantia nigra pars compacta and ventral tegmental area of the midbrain project to the dorsal lateral striatum of the basal ganglia and the
prefrontal cortex, respectively. The earlier and more profound depletion of DA in the dorsal lateral striatum results in impairment in corticostriatal
thalamic circuitry, which is important for automatic movements, and consequently greater reliance on frontal striatal circuitry, important for
goal-directed motor control in Parkinson’s disease (PD). Although affected to a lesser degree, DA loss in the frontal-striatal circuit contributes
to cognitive impairments in PD. Animal studies are beginning to reveal evidence for exercise-induced neuroplasticity in motor and cognitive
related circuitry in PD and how the two circuits are inter-related.
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neuroplasticity have focused on the basal ganglia and
its cortical connections, since they comprise impor-
tant motor and cognitive circuits, respectively, that
are altered in disease. The basal ganglia consists of
the putamen and caudate nucleus, collectively termed
the striatum in rodents. The striatum is composed
of DA-D1R and DA-D2R-containing medium spiny
neurons (MSNs) of the direct and indirect projection
pathways, respectively. Synaptic connections between
DA-D1R and DA-D2R-containing MSNs and corti-
cal glutamatergic neurons, make up cortical-striatal
circuits [11]. In the healthy brain, these circuits are
responsible for automatic (unconscious) and voli-
tional (goal-directed) movements as well as cognitive
processes, including executive function (EF) [12].
Executive function consists of working memory, task
flexibility, and problem solving, as well as plan-
ning and execution of tasks [13]. The key circuits
affected in PD are (i) the cortico-striatal motor cir-
cuit, including the dorsal lateral striatum (analogous
to the putamen in primates), the primary motor and
somatosensory cortex and the thalamus, and (ii) the
frontal-striatal circuit, including the prefrontal cortex
and the dorsal medial striatum (analogous to the cau-
date nucleus in primates). In Fig. 1 we depict the
two major cortico-striatal circuits discussed in this
review, their convergence in the striatum and modu-
lation through DA. In PD the early and more profound
DA-depletion occurs in the dorsal lateral striatum,
thus leading to early deficits in automatic execution of
routine movements [13, 14]. Imaging studies suggest
that as individuals with PD lose control of automatic
movements that there is a shift towards frontal-striatal
volitional control of motor performance [15]. It has
been posited that deficits in EF that are common even
in early stages of PD may be due in part to an over-
recruitment and saturation of the frontal-striatal circuit
[16]. Alternatively, lesion studies have supported that
direct impairment of the dorsal striatum may lead
to disruption of the frontal striatal circuit and thus
EF deficits directly [17]. In addition to their role in
PD, the two circuits described above as well as DA
receptors are also important in motor learning [18].
Specifically, the volitional and automatic circuits and
the DA-D1R and DA-D2R are involved in the acqui-
sition phase of motor learning while the automatic
circuit and the DA-D2R are involved in the retention
phase of motor skill learning. Exercise that incorpo-
rates aspects of motor learning, such as skill (e.g., yoga,
tai chi, treadmill running) may be useful for exam-
ining exercise-induced mechanisms of neuroplasticity
in PD.

EPIDEMIOLOGICAL STUDIES OF
EXERCISE EFFECTS IN PD

Physical activity has been demonstrated to lead to
tremendous health benefits in individuals of all ages
and in both healthy and disease states. It is only
in the last two decades that epidemiological studies
have suggested that a lifetime of physical activity
may provide protection from a wide range of neu-
rological disorders, including PD [19], Alzheimer’s
disease (AD) [20], and cognitive impairment associ-
ated with aging [21]. For example, a study by Chen
and colleagues demonstrated that maintaining stren-
uous levels of physical activity in young adulthood
was associated with a reduced risk of acquiring PD
in later life [22]. One potential mechanism by which
exercise may reduce an individual’s risk for common
neurodegenerative diseases, or age-related cognitive
decline is through enhanced brain connectivity, with
concomitant increased reserve and resilience to age-
related synaptic deterioration. These exercise-induced
changes in brain connectivity may occur at a molecu-
lar and circuit level and include essential components
that drive neuroplasticity: neurotransmission, synap-
togenesis and neurogenesis. While, evidence suggests
that impaired function in PD can be improved through
rehabilitation and exercise, there remains a significant
gap in understanding exercise-induced neuroplastic-
ity in the context of a neurodegenerative disorder,
such as PD. To elucidate the underlying mecha-
nisms of exercise-related functional improvement in
people with PD, researchers have primarily utilized
rodent models, including the neurotoxin induced 1-
methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)
and 6-hydroxydopamine (6-OHDA) models [23, 24].
These models are helpful as a means to investigate
exercise induced mechanisms of neuroplasticity and
brain repair in PD since they exhibit analogous patho-
physiological and behavioral characteristics of PD: (i)
loss of midbrain dopaminergic neurons, (ii) depletion
of striatal DA, (iii) aberrant corticostriatal connectivity
and (iv) impaired cognitive and motor performance.

EXERCISE EFFECTS ON DA
NEUROTRANSMISSION IN ANIMAL
MODELS

In PD, the classical pathophysiological model is
that the loss of DA in the dorsal lateral striatum
leads to imbalance of the DA-D1R direct and DA-D2R
indirect pathways, such that there is increased
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and aberrant corticostriatal glutamatergic synaptic
drive and hyper-excitability in the DA-D2R indirect
containing pathway. It has been posited that restoration
of DA neurotransmission along this DA-D2R pathway
may serve to normalize this aberrant form of corticos-
triatal synaptic plasticity. Animal studies support that
exercise benefits in PD may be due in part to facilitated
DA neurotransmission. Specifically, using the MPTP
mouse model of PD, intensive daily treadmill exer-
cise leads to improved motor function and increased
DA neurotransmission compared to the non-exercise
MPTP mice. While both MPTP mice groups showed
equal levels of cell loss and DA-depletion, only exer-
cised mice showed: (i) increased evoked DA release,
and (ii) increased extracellular DA though down regu-
lation of the DA transporter (DAT) expression and (iii)
decreased clearance using fast-scan cyclic voltamme-
try within the dorsal striatum [1, 2]. In the context of
motor learning and its potential role in exercise and
rehabilitation related benefits in PD, studies in mice
report that DA availability can influence motor learn-
ing (rotarod training). Specifically, PitX3 (paired-like
homeodomain transcription factor 3) mutant mice that
lack striatal DA due to developmental loss of nigrostri-
atal dopaminergic neurons show deficiencies in motor
learning [25]. Conversely, restoration of DA through
levodopa treatment in these mutant mice restores motor
learning [25]. Thus, exercise effects on DA availabil-
ity through altered neurotransmission may act in part
to promote mechanisms critical for motor learning and
important for restoring motor behavior in PD.

Another mechanism by which exercise can influence
DA neurotransmission is through DA receptor expres-
sion [26]. For example, exercise studies in rodents have
demonstrated increasedDAneurotransmission through
an increase in DA-D2R protein expression and bind-
ing within the dorsal lateral striatum [1]. Specifically,
after 28-days of intensive treadmill training in MPTP
mice, DA-D2R protein expression was increased, with
no reported change in the DA-D1R. Treadmill exer-
cise also resulted in an increase in DA-D2R transcript
within MSNs of the dorsal striatum supporting the reg-
ulatory role of exercise at the level of gene expression
[1, 2]. Using positron emission tomography imaging
with [18F]-fallypride, a ligand with high specificity
for the DA-D2R, this effect of exercise in MPTP
mice was also observed through increased DA-D2R
binding [27]. These reports are consistent with studies
that demonstrate an exercise-induced increase of DA-
D2R mRNA, protein, and binding in the striatum of
healthynon-dopaminedepletedrodents[28–30].Trans-
lating these MPTP animal findings to clinical studies,

an exercise-induced increase in DA-D2R expression
was also observed in individuals newly diagnosed with
PD [31]. After an 8-week regimen of intensive tread-
mill training, subjects who underwent PET-imaging
demonstrated an 80% increase in binding of [18F]-
fallypride within the dorsal caudate nucleus compared
to pre-exercise baseline values [31]. While the rela-
tionship between exercise-induced motor benefits in
PD and increased DA-D2R expression in humans is
unknown, studies in healthy animals suggest that stri-
atal DA-D2R function and its role in the establishment
and maintenance of motor skill learning, may underlie
this benefit [32, 33]. For example, electrophysiological
studies within the striatum of animals, in conjunction
with a pharmacologically specific blockade of DA-
D2Rs, have shown that antagonism of the DA-D2R
in either early or late phases of motor skill learning
leads to impairment in glutamatergic-dependent synap-
tic potentiation and motor learning [33]. These studies
also demonstrate that DA-D2R related synaptic plastic-
ity that is responsible for motor learning is localized to
the dorsal striatum. Further support for the role of DA-
D2R and motor learning comes from studies in rodents
by Beeler and colleagues [25, 32]. These researchers
demonstrate that the DA-D2R is also important in the
maintenance of learned motor behaviors since phar-
macological blockade of the DA-D2R, and not the
DA-D1R,inrodentsleadstolossofalearnedmotorskill.

In addition to its role in motor performance, pre-
liminary studies in animals suggest that an exercise-
induced increase in dorsal striatal DA-D2R expression
may also contribute to the reported exercise related
improvements in executive function, including behav-
ioral flexibility [34]. Specifically, studies have shown
that 18 days of exercise can improve discrimination
testing in a set-shifting, cross-maze task in healthy
rodents. This exercise benefit was reversed through
selective pharmacological blockade of the DA-D2R.
Taken together animal studies support that exercise
inducedincreaseinDAavailabilityalongwithincreased
DA-D2Rexpressioninthedorsalstriatumanditsrelated
cortical circuitry may contribute to exercise related
effects in neuroplasticity and behavioral benefits in PD.
Future studies in humans are clearly needed to confirm
this relationship.

EXERCISE EFFECTS ON GLUTAMATE
NEUROTRANSMISSION IN ANIMAL
MODELS

Glutamate neurotransmission is also important in
synaptic function and especially in learning and
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memory as demonstrated by its role in mediating
both long-term potentiation (LTP) and long-term
depression (LTD) [35, 36]. These electrophysiolog-
ical properties of synaptic connectivity are dictated
by specific receptor subtypes, especially the NMDA
(N-methyl-D-aspartate) and AMPA (alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid) recep-
tor, not only through long term synapse specific
expression, but also by fast trafficking from intracel-
lular stores to sites within the postsynaptic density
[36]. Changes in glutamate receptor subtype expres-
sion (i.e. neuroplasticity) and localization on neuronal
electrophysiological properties are the direct result of
experience-dependent events, including exercise. For
example, using the MPTP-lesioned mouse model, we
have reported exercise-induced changes in synaptic
expression of specific receptor subunits of the AMPA
receptor [37]. As previously mentioned above, DA-
depletion leads to structural and functional changes
in striatal MSNs, including the loss of predominantly
cortico-striatal synaptic connections (in both direct
and indirect projection pathways) and increased glu-
tamatergic drive in remaining cortico-striatal synaptic
connections [38]. In the MPTP mouse, exercise is able
to reverse this aberrant hyperactive glutamatergic state
by two would-be processes. First, exercise alters glu-
tamatergic receptor subunit expression, especially the
AMPA receptor subunit GluA2, particularly localized
to indirect DA-D2R containing MSNs [37]. On stri-
atal MSNs, exercise increases the relative expression
of GluA2, a calcium impermeable AMPA receptor sub-
unit type, from the calcium permeable AMPA receptor
GluA1. Electrophysiological correlates demonstrate
that exercise reduces synaptic excitability and post-
excitatory synaptic potentials [37]. Second, exercise
reduces the presynaptic storage of glutamate, as mea-
sured through electron microscopy [1]. Taken together,
exercise reduces aberrant glutamatergic drive, thus,
restoring cortico-striatal circuit function.

EFFECTS OF EXERCISE ON DENDRITIC
SPINE DENSITY IN THE BASAL GANGLIA

In addition to functional synaptic changes, the loss
of DA leads to morphological changes in glutamatergic
synapses, including a decrease in dendritic spine den-
sity and disruption of connectivity in the motor circuit
[39]. Dendritic spine loss of MSNs has been reported
in post-mortem tissues of patients with PD, as well
as in the 6-OHDA and MPTP rodent models of DA-
depletion [40–42]. In addition, studies have suggested

that dendritic spine loss occurs predominantly on the
DA-D2R-containing MSNs early after DA depletion
[43, 44], but others have shown that spine loss occurs
on both DA-D2R and DA-D1R following prolonged
DA-depletion [41]. One possible effect of exercise
toward restoration of the circuitry of the basal gan-
glia may be through changes in spine density. Studies
in healthy rodents subjected to environmental enrich-
ment, voluntary wheel running, and forced treadmill
running paradigms have demonstrated an increase in
dendritic spine density in cerebellar Purkinje, CA3
hippocampal pyramidal, and layer III cortical neurons
[45–49]. Studies in MPTP mice have shown that inten-
sive treadmill running can reverse the loss of dendritic
spines on striatal MSNs [50]. Besides effects on den-
dritic spine density, intensive exercise also leads to the
restoration of synapses as indicated by the elevated
expression of both presynaptic (Synaptophysin) and
postsynaptic (PSD-95) proteins.

EXERCISE TYPE, BLOOD FLOW, AND
NEUROGENESIS

Exercise type can be loosely categorized into
predominantly skilled or aerobic exercise. Aerobic
exercise is a system of conditioning aimed at enhanc-
ing circulatory and respiratory efficiency that improves
the body’s use of oxygen through vigorous, sustained
exercise such as running, swimming, or cycling. This
is in contrast to skilled exercise, which is a form of
goal-oriented movement in which temporal and/or spa-
tial accuracy is important for achieving pre-determined
objectives. The important relationship between the
type of exercise and nature of neuroplasticity related
changes is underscored by prior work suggesting that
rats that have undergone unskilled and repetitive exer-
cise (aerobic exercise) have an increase in the density
of capillaries in the brain’s motor regions, without an
increase in synaptic numbers (as measured by dendritic
spine density) [51–53]. This is in contrast to rats that
have learned new motor skills (skilled exercise) and
have a greater number of synapses per neuron, with-
out an increase in the density of capillaries. Recent
studies in animal models, including PD, have begun to
further elucidate the differential effects of skilled ver-
sus aerobic exercise on neuroplasticity associated with
alterations in blood flow. These differential effects of
skilled versus aerobic exercise are observed at the level
of anatomical specificity (circuit and brain region).
Specifically, recent work by our laboratory suggests
that skilled compared to non-skilled aerobic training
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differentially affects functional activation of the medial
prefrontal cortex in parkinsonian rats during walking
[54]. Rats with bilateral, striatal 6-OHDA lesions were
exposed to forced exercise for 4 weeks, either on a sim-
ple running wheel, considered a form of non-skilled
aerobic exercise (AE), or on a complex wheel with
irregularly spaced rungs, a form of skilled aerobic exer-
cise (SAE). Cerebral perfusion was mapped during
horizontal treadmill walking or at rest using [14C]-
iodoantipyrine autoradiography, one week after the
completion of exercise. SAE compared to AE resulted
in greater increases in regional cerebral blood flow
(rCBF) during walking and at rest in the prefrontal
cortex (prelimbic area). Seed correlation analysis
during locomotor walking revealed that SAE com-
pared to AE resulted in a much broader functional
connectivity of prefrontal cortex with the striatum pro-
viding evidence of frontal-striatal neuroplasticity in
these circuits through exercise. In addition, there was
also evidence for changes in functional connectivity
involving the primary and secondary motor cortices,
and primary somatosensory cortex. Lastly, prelimbic
cortical activation correlated with restoration of motor
function in lesioned rats undergoing skilled aerobic
exercise more than with non-skilled aerobic exercise.
These results show for the first time that SAE compared
to AE results in enhancement of prefrontal cortical
mediated control of motor function. We propose that
the SAE paradigm likely required greater effort in
motor preparatory processing, motor control and set
shifting than that required for the AE, all key roles
ascribed to prelimbic cortex [55, 56]. This suggests that
the prefrontal cortex and its associated pathways are a
central target for experience-dependent neuroplasticity
as a result of SAE. It remains to be proven whether such
recruitment of prefrontal cortex by SAE will improve
performance of the 6-OHDA rat during set-shifting
tasks. If proven, this would confirm the notion that
motor rehabilitation programs for PD patients should
include a relatively high cognitive demand, such that by
forcing patients to practice task-switching over a suf-
ficient number of practice trials, they might be able to
overcome their inability to generalize learned actions
to different environmental contexts [57, 58]. In addi-
tion, future research will need to examine whether
any recruitment of prefrontal cortex by SAE is due to
changes in dopaminergic pathways. While dopaminer-
gic dysfunction in prefrontal cortex is an early feature
of PD and has been linked to dopaminergic loss in the
caudate and substantia nigra [59–63], its role in shap-
ing cognitive deficits and responding to an exercise
intervention remains to be determined.

In the healthy rodent brain, studies are beginning
to demonstrate that the types of exercise and activ-
ity can differentially influence the various stages of
neurogenesis including cell migration, differentiation,
maturation and circuit integration [64, 65]. Neuroge-
nesis is the birth of new neurons. Within the adult
mammalian brain there are several unique regions that
display the birth of new cells throughout life, includ-
ing the granular cell layer of the hippocampus, the
subventricular zone, and the prefrontal cortex [66]. It
is well established that exercise (and environmental
enrichment, especially those designs that incorporate
running wheels) enhances neurogenesis in the healthy
rodent brain [67, 68]. For example, in both young
and aged mice, voluntary wheel running has been
positively correlated with increased hippocampal neu-
rogenesis and improved memory as demonstrated by
enhanced water maze performance [67, 69]. Interest-
ingly, rodents exposed to an enriched environment that
incorporates aspects of skilled activity and cognitive
engagement compared to rodents exposed to volun-
tary running wheel show greater cognitive flexibility
in the Morris Water Maze. This improvement may be
due to both neurogenesis and enhanced neuronal incor-
poration into hippocampal circuitry [70]. Such studies
suggest that while many different types of physical
activity promote the survival of these newborn cells,
migration, and integration may be dependent on the
degree of cognitive (skilled) engagement [71, 72]. The
effect of skilled exercise on stages of neurogenesis may
be due to its influence on the proliferation of astrocytes,
activation of microglia, and expression of factors, such
as neurotrophic factors and its receptors, which are
known to be important in regulating neuroplasticity
and synaptogenesis in brain regions where the birth of
new cells are promoted [73–75].

In rodent models of neurological disorders where
reduced neurogenesis is evident, including mouse mod-
els of Alzheimer’s disease, exercise has been shown
to elevate hippocampal neurogenesis and delay deficits
in learning and memory [76]. However, some studies
have shown elevated or no effects of exercise in neuro-
genesis in the context of disease, such as Huntington’s
disease [77–79]. In animal models of PD, exercise may
facilitate neurogenesis in the hippocampus and subven-
tricular zone, similar to reports with wild-type animals,
however, there are few reports showing enhanced neu-
rogenesis within the damaged striatum or midbrain
regions with physical activity [80, 81]. Clearly a major
gap in our knowledge is whether exercise or the type of
exercise influences different stages of neurogenesis in
brain regions affected by disease.
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EXERCISE AND THE COUPLING OF
NEURONAL ACTIVATION AND
CEREBRAL BLOOD FLOW

As described in previous sections, skilled exercise
may lead to the recruitment and activation of neu-
rons in specific circuits within the brain. On the other
hand, aerobic exercise may have more global effects
on the entire brain including lowering the threshold
for neuroplasticity to occur through the expression of
neurotrophic factors or other modulators of synaptic
plasticity as well as increasing rCBF [82]. However,
the activation of neurons through engagement in skilled
exercise and the modulation of blood flow through aer-
obic exercise may not be mutually exclusive processes.
Rather they may promote and regulate neuroplasticity
through overlapping and integrated mechanisms. One
potential scenario may be that intensive skilled exer-
cise with a resultant increase in neuronal activity to
a specific circuit (a motor circuit for example) may
result in elevated demand for regional oxygen con-
sumption (resulting in oxygen depletion within this
region). Elevated oxygen consumption in turn, can acti-
vate a number of regulatory signals that respond to
changes in metabolic expenditure. For example, the
hypoxia-inducible transcription factor 1 alpha (HIF-
1alpha) is activated under conditions of low tissue
oxygenation, the result of increased metabolic demand
[83]. Acute, or moderate to intensive aerobic exercise
has been shown to induce transient cerebral hypoxia,
which is largely sensed by HIF-1alpha [84]. Important
to neuroplasticity, HIF-1alpha regulates the expression
of a wide array of downstream target genes implicated
in promoting neurogenesis, synaptogenesis, and angio-
genesis [85]. Furthermore, HIF-1alpha modulates the
expression of genes essential for increasing fuel avail-
ability, such as glucose transporters (GLUT-1 and
GLUT-3) and enzymes that participate in the glycolytic
pathway. These enzymes in turn may facilitate and
support synaptic strength and connectivity [84]. Thus,
exercise, through orchestrating the recruitment of cir-
cuitry, high neuronal activity along with increasing
cellular metabolic energy demand, leads to the activa-
tion of a cascade of genes important for neuroplasticity,
repair, and the establishment of homeostasis. These
mechanism linking exercise and neuroplasticity may
also involve increased rCBF to activated brain regions
leading to a number of important consequences includ-
ing: (i) increasing the availability of biomolecules
responding to increased energy demand, (ii) removal of
waste materials and maintenance of cellular homeosta-
sis, (iii) increased delivery of neurotrophic factors such

as BDNF, (iv) altering the blood brain barrier to allow
the targeted passage of biomolecules and circulating
cells such as macrophages to activated sites, and (v)
delivery of biomolecules involved in the formation of
synaptic connections. Thus, exercise may incorporate
either or both mechanisms to facilitate neuroplasticity.
A major gap in knowledge is the precise cause-effect
relationship between elevated metabolic demand and
altered CBF. Metabolically high demand neuronal cir-
cuits can release nitric oxide synthase (NOS) and
angiogenic factors to increase blood flow to sites where
there is demand [86–88]. On the other hand, metabol-
ically active neuronal circuits may reinforce regional
increases in CBF.

CONCLUSIONS

Animal studies have been instrumental in providing
evidenceforexercise’sroleinneuroplasticityofcortico-
striatal circuits that are profoundly affected in PD.
This evidence includes exercise’s role in modulating
DA and glutamate neurotransmission, synaptogenesis
and increased regional cerebral blood flow. In addition,
recent evidence supports that the type of exercise may
have regional effects on brain circuitry, with skilled
exercise differentially affecting frontal related circuits
more so than pure aerobic exercise. Although clearly
more research is needed to address major gaps in our
knowledge, we hypothesize that skilled compared to
aerobic exercise has different effects on neuroplastic-
ity, but that these effects may not be mutually exclusive.
For example, the potential effects of different types of
exercise on inducing neuroplasticity in a circuit specific
manner may occur through synergistic mechanisms
that include the coupling of an increasing neuronal
metabolic demand with a corresponding increase in
regional blood flow. Thus, both types of exercise may
be important for facilitating neuroplasticity. In Fig. 2
we illustrate that most exercises lie within a spectrum
between aerobic and skilled exercise. For example,
peddling on a recumbent bicycle may be considered
predominantly aerobic with minimal skill or cognitive
engagement. On the other end of the spectrum juggling
mayrepresentahighlyskilledtaskwithminimalaerobic
involvement. However, many exercises such as swim-
ming and running involve a combination of both skilled
and aerobic exercise. Elucidation of the relative contri-
bution of different types of exercise on neuroplasticity
and motor and cognitive improvement in PD may pro-
vide mechanistic insights important to facilitate brain
repair and modify disease progression.
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Fig. 2. Physical activity spans the spectrum from aerobic to skilled exercise. Recent exercise studies in animal models of PD are beginning
to support the differential effects of aerobic versus skilled exercise on the establishment and maintenance of brain circuitry. In this Figure we
illustrate these concepts. One potential hypothesis highlights aerobic exercise that may lead to a broad increase in cerebral blood flow, including
within those brain circuits in the basal ganglia and cerebellum involved in motor control. Other global factors may also be activated including
reduced oxidative stress, reduced neuro-inflammation, and increased expression of neurotrophic factors. This is in contrast to skilled exercise
that entails perceptual and a higher level cognitive processing that may specifically target prefrontal and associated cortical circuits important
for executive function.
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